
OPTICAL GLASSES: VISIBLE - NEAR INFRA-RED

Title: Optical Glasses - 250-2500nm

Material/Specification: Schott N-PK51 for 250nm - 2500nm transmission

Range/Description: OPG-N-PK51

Internal transmittance for 10mm thickness

WAVELENGTH	N-PK51 (T%)
2500 nm	0.954
2325 nm	0.967
1970 nm	0.986
1530 nm	0.994
1060 nm	0.997
700 nm	0.996
660 nm	0.996
620 nm	0.997
580 nm	0.998
546 nm	0.998
500 nm	0.997
460 nm	0.996
436 nm	0.995
420 nm	0.994
405 nm	0.994
400 nm	0.994
390 nm	0.991
380 nm	0.986
370 nm	0.976
365 nm	0.963
350 nm	0.890
334 nm	0.710
320 nm	0.430
310 nm	0.250
300 nm	0.120
290 nm	0.040
280 nm	0.000
270 nm	0.000
260 nm	0.000
250 nm	0.000

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com

OPTICAL GLASSES: VISIBLE - NEAR INFRA-RED

Internal Transmittanceti

Refractive Indices			
	λ [nm]		
n _{2325.4}	2325.4	1.50987	
n _{1970.1}	1970.1	1.51312	
n _{1529.6}	1529.6	1.51665	
n _{1060.0}	1060.0	1.52045	
n _t	1014.0	1.52089	
n _s	852.1	1.52278	
n _r	706.5	1.52527	
n _C	656.3	1.52646	
n _{C'}	643.8	1.52680	
n _{632.8}	632.8	1.52711	
n _D	589.3	1.52849	
n _d	587.6	1.52855	
n _e	546.1	1.53019	
n _F	486.1	1.53333	
n _{F'}	480.0	1.53372	
n _g	435.8	1.53704	
n _h	404.7	1.54010	
n _i	365.0	1.54527	
n _{334.1}	334.1	1.55079	
n _{312.6}	312.6	1.55579	
n _{296.7}	296.7		
n _{280.4}	280.4		
n _{248.3}	248.3		

λ [nm]	τ _i [10 mm]	τ _i [25 mm]
2500	0.954	0.89
2325	0.967	0.920
1970	0.986	0.965
1530	0.994	0.985
1060	0.997	0.992
700	0.996	0.991
660	0.996	0.991
620	0.997	0.992
580	0.998	0.994
546	0.998	0.995
500	0.997	0.993
460	0.996	0.989
436	0.995	0.987
420	0.994	0.986
405	0.994	0.985
400	0.994	0.984
390	0.991	0.977
380	0.986	0.965
370	0.976	0.940
365	0.963	0.910
350	0.89	0.75
334	0.71	0.43
320	0.43	0.12
310	0.25	0.03
300	0.12	
290	0.04	
280		
270		
260		
250		

Relative Partial Dis	spersion
$P_{s.t}$	0.2750
$P_{C.s}$	0.5360
$P_{d.C}$	0.3046
$P_{e.d}$	0.2387
$P_{g,F}$	0.5401
$P_{i,h}$	0.7535
P' _{s.t}	0.2727
P' _{C'.s}	0.5797
P' _{d.C'}	0.2540
P' _{e.d}	0.2367
P' _{g.F'}	0.4794
P' _{i.h}	0.7473

n _{248.3}	248.3
Constants of	Dispersion Formula
B ₁	1.15610775·10 ⁺⁰⁰
B ₂	1.53229344·10 ⁻⁰¹
B ₃	7.85618966·10 ⁻⁰¹
C ₁	5.85597402·10 ⁻⁰³
C ₂	1.94072416·10 ⁻⁰²
C ₃	1.40537046·10 ⁺⁰²

-1.98·10⁻⁰⁵ -6.06·10⁻⁰⁹

1.60·10⁻¹¹

4.16.10-07

5.01·10⁻¹⁰ 0.134

Constants of Formula dn/dT

 D_1

 D_2

 E_0

 $\lambda_{TK}[\mu m]$

200	
270	
260	
250	
Color Code	
λ_{80}/λ_{5}	35/29
λ_{80}/λ_{5}	35/29
λ_{80}/λ_{5} Remarks	35/29

Deviation of Rel. Partial Dispersion ΔP from "Normal Line"			
$\Delta P_{C.t}$	-0.0991		
$\Delta P_{C.s}$	-0.0463		
$\Delta P_{F.e}$	0.0088		
$\Delta P_{g,F}$	0.0258		
$\Delta P_{i,g}$	0.1203		
•			

Other Properties

α _{-30/+70°C} [10 ⁻⁶ /K]	12.7
α+20/+300°C[10 ⁻⁶ /K]	14.4
Ta[°C]	496
T ₁₀ ^{13.0} [°C]	486
T ₁₀ ^{13.0} [°C] T ₁₀ ^{7.6} [°C]	
c _p [J/(g·K)]	0.618
λ[W/(m·K)]	
ρ[g/cm³] E[10³N/mm²]	3.96
['] E[10 ³ N/mm ²]	74
μ	0.295
K[10 ⁻⁶ mm ² /N]	0.54
HK _{0.1/20}	400
HG	6
В	1
CR	2
FR	0
SR	51.2
AR	3.3
PR	4.3

Temperature	Coefficients	of Refracti	ve Index			
		∆n _{rel} /∆T[10	⁻⁶ /K]		∆n _{abs} /∆T[10 ⁻⁶ /K]	
[°C]	1060.0	е	g	1060.0	е	g
-40/ -20	-6.0	-5.7	-5.4	-8.1	-7.8	-7.5
+20/+40	-7.1	-6.7	-6.4	-8.4	-8.1	-7.7
+60/+80	-7.5	-7.1	-6.7	-8.6	-8.2	-7.8

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com

